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This study evaluated the impact of gas concentration and wind 
sensor locations on the accuracy of measuring gas emission 
rates from a lagoon environment using the backward Lagrangian 
stochastic (bLS) inverse-dispersion technique. Path-integrated 
concentrations (PICs) and three-dimensional (3D) wind vector 
data were collected at different locations within the lagoon 
landscape. A floating 45 m × 45 m perforated pipe network on 
an irrigation pond was used as a synthetic distributed emission 
source for the controlled release of methane. A total of 961 15-
min datasets were collected under different atmospheric stability 
conditions over a 2-yr period. The PIC location had a significant 
impact on the accuracy of the bLS technique. The location of the 
3D sonic anemometer was generally not a factor for the measured 
accuracies with the PIC positioned on the downwind berm. The 
PICs across the middle of the pond consistently produced the 
lowest accuracy with any of the 3D anemometer locations (<69% 
accuracy). The PICs located on the downwind berm consistently 
yielded the best bLS accuracy regardless of whether the 3D sonic 
anemometer was located on the upwind, side, or downwind 
berm (accuracies ranged from 79 to 108%). The accuracies of the 
emission measurements with the berm PIC-berm 3D setting were 
statistically similar to that found in a more ideal homogeneous 
grass field. Considering the practical difficulties of setting up 
equipment and the accuracies associated with various sensor 
locations, we recommend that wind and concentration sensors 
be located on the downwind berm.
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As a result of biochemical transformation of manures, 
anaerobic waste lagoons and storage ponds from con-
centrated animal feeding operations are sources of odor, 

ammonia, and greenhouse gas emissions (Liang et al., 2002; 
Vanotti et al., 2009). Accurate assessment of gas emissions from 
waste lagoons and storage ponds is important for proper plan-
ning and management of animal wastes, but the measurement of 
these gas emissions is challenging. For example, reported emis-
sion rates using different measurement methods vary widely 
(Arogo et al., 2003; Harper, 2005; Harper et al., 2011; Ro et al., 
2011). Within these circumstances, the backward Lagrangian 
stochastic (bLS) inverse-dispersion technique is emerging as 
a functional micrometeorological method for measuring gas 
emissions (Flesch et al., 2004; Flesch et al., 2005b; McBain and 
Desjardins, 2005; Gao et al., 2010; Harper et al., 2010; Ro et al., 
2011). In this inverse dispersion technique, the emission rate is 
calculated from the rise in gas concentration downwind of the 
emission source. The advantages of the technique are its rela-
tively high accuracy, simplicity, and flexibility in terms of field 
measurements. From our previous studies in idealized flat ter-
rain, the bLS technique yielded good accuracies (measured emis-
sion rate/actual emission rate) of 0.98 ± 0.24 and 0.94 ± 0.24 for 
single and dual uniformly distributed emission sources, respec-
tively (Ro et al., 2011). However, applying the bLS technique in 
lagoon settings is complicated because the typical lagoon envi-
ronment often seemingly violates the bLS’s underlying assump-
tion of idealized wind flow over flat and homogenous terrain.

As recommended by the ASAE Engineering Practice 403.3 
(ASAE, 1998), many animal waste lagoons are surrounded by 
vegetative barriers (e.g., trees) to enhance the dispersion and 
dilution of odors. These barriers complicate the wind flow 
environment around the lagoon: as the wind moves from the 
upwind to the downwind side of the lagoon, there is a transition 
from a highly turbulent zone with low wind speeds, due to the 
shelter of the trees, to a less turbulent zone with higher wind 
speeds over the lagoon. One strategy for minimizing the effects 
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of this localized wind complexity is to move the concentration 
and wind sensors well downwind of the lagoon and away 
from the trees and berms to an environment where the wind 
has re-established a more idealized flow (Flesch et al., 2005a). 
However, in many situations, especially in the southeastern 
United States, a clear downwind location for sensors is not 
available.

We previously reported a relatively good accuracy of 0.88 ± 
0.2 for measuring lagoon emission using the bLS technique with 
a concentration sensor located on the downwind berm (Ro et 
al., 2013). Other researchers have indicated robustness in simple 
inverse-dispersion methods applied to environments where the 
assumptions of idealized wind flow are violated (Wilson et al., 
2001; Flesch et al., 2005b; Gao et al., 2010). Thus, some sensor 
locations in complex environments do not give accurate emission 
calculations. In all of these cases, it was also possible to accurately 
infer emissions by avoiding certain sensor locations.

The objective of this study was to identify optimal locations 
for wind and concentration sensors to accurately measure lagoon 
gas emissions. This paper reports the results of a study that has 
significantly expanded the scope of our previous work via a much 
larger number of datasets (from 104 to 961 datasets) with path-
integrated concentrations (PICs) and wind statistics obtained 
from various locations within the lagoon landscape. Using this 
expanded dataset, we suggest a set of guidelines to help users 
identify good and poor locations for wind and concentration 
sensors within the lagoon boundary.

Materials and Methods
This study was conducted on a rectangular irrigation pond 

(59 m × 68.5 m) at the USDA–ARS Coastal Plains Soil, Water and 
Plant Research Center in Florence, South Carolina (34°14.741¢ 
N, 79°48.605¢ W). The pond was bordered by pine trees on two 
sides and by open crop land on the remaining two sides. A small 
pump house was located along one side. The irrigation pond 
was filled with ground water from an adjacent well. The berm 
height above the water ranged from 0.4 to 1.42 m. This site was 
selected because its surroundings (e.g., tree lines, buildings, and 
cropland) were similar to typical animal wastewater treatment 
lagoons in the southeastern United States (Fig. 1). Bales of pine 
straw (0.25 m × 0.4 m × 0.7 m) were secured midway up the 
side slopes along the upwind and downwind berm to create an 
artificial “rough” side slope to simulate an animal manure storage 
lagoon berm frequently found with heavy vegetation growth in 
warm climate regions.

A floating perforated pipe network was used as a synthetic 
distributed lagoon emission source. The floating emission 
source was constructed of perforated, 1.3-cm schedule 40 
polyvinyl chloride pipe assembled into a 45-m2 grid. The grid 
was set up with an “I”-shaped manifold connected to a cylinder 
of compressed methane gas. Laterals were connected at 3-m 
intervals along the manifold, with 44 1.6-mm holes drilled at 
1-m intervals. Circular foam floats were threaded onto each 
section of the laterals and manifold to float the entire grid on the 
water surface. The floating grid was secured in the center of the 
pond so that the laterals were in the northwest-southeast plane. 

Fig. 1. Irrigation pond layout, floating emission source, and sensor locations.
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This 45-m2 perforated pipe network was designed to provide a 
uniform discharge flow from all orifices over the entire network. 
Because the pressure drop through an orifice was about 4 orders 
of magnitude higher than the pressure drop over the length 
of manifold for the range of gas flows tested in this study, the 
manifold acted as an “infinite reservoir” and provided uniform 
discharge flow distribution. The percent maldistribution, defined 
as the percentage variation in flow between the first and the last 
orifices, was <0.001% (Perry and Green, 1997).

Specialized mounting frames were designed to position the 
instrumentation within the reservoir boundary (Fig. 2). Frames 
were constructed using lightweight 2-in aluminum square tubing. 
The frames consisted of a base section designed to maximize the 
base footprint. The base section was positioned along the edge 
of the berm and staked to the ground with 0.5-in steel rods. An 
articulating arm with an adjustable supporting leg extended into 
the reservoir from the base section. An articulating mounting 
plate was secured to the end of the support arm. The mounting 
plate consisted of a 6 in × 12 in aluminum plate supported 
by 2-in aluminum square tubing. The frames allowed the 
concentration sensors to be positioned directly over the edge of 
the water at variable heights. An additional frame was designed 
to support the 3D sonic anemometer. The anemometer frame 
was constructed with a similar base section with the addition of 
weights placed on top of the base. A longer arm section consisted 
of multiple sections of the 2-in aluminum square tubing, allowing 
the anemometer position to be well out over the water. A short 
vertical mast was secured to the end of the arm. The 3D sonic 
anemometer was mounted on the mast at the desired height.

Pure methane gas (99% CP grade methane, Airgas, Inc.) was 
used as a test gas, and its true emission rate was calculated from 
weight loss during experiments. The weight loss of the methane 
gas cylinder was measured with a 100-kg digital platform scale 
(Ohaus Champ Platform scale with CW11–2EO indicator). 
A video camera was used to record the gas flow rate and the 
weight of the gas cylinder. Change in mass over time and the 
gas purity were used to calculate the actual emission rate. The 
methane emission rates for all experiments ranged from 0.3 to 
0.7 mg m-2 s-1, similar to the methane emission rates from swine 
anaerobic lagoons (Sharpe and Harper, 1999).

The open-path tunable diode laser absorption spectrometers 
(TDLs) (GasFinder2.0 for CH4, Boreal Laser Inc.) and 
retroreflectors were used to measure PICs along the downwind 
berm, across the middle of the pond, and along the downwind 
water’s edge of the pond (Fig. 1). The path lengths of these PICs 
were 63, 55, and 55 m, respectively. The TDLs were set up for 
a sampling rate of about 1 Hz and had continuous calibration 
updates every 40 samples using their internal reference cells. In 
addition, the TDLs were calibrated using an external calibration 
tube (5 cm i.d. × 6.25 m length) with a standard 30 ppm methane 
gas before field tests. A more detailed description of the pond 
and instrumentation can be found in (Ro et al., 2013).

Three-dimensional sonic anemometers (CSAT3, Campbell 
Scientific, Inc.) were used to measure wind speeds at 20 Hz. The 
3D sonic anemometers provided the wind information needed 
for calculations of friction velocity (u*), Obukhov stability length 
(L), surface roughness length (zo), and wind direction (Flesch et 
al., 2004). During the spring tests (Mar. and Apr. 2011 and 2013), 

Fig. 2. Schematic diagrams of sensor holders used in this study. TDL, open-path tunable diode laser absorption spectrometer.
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the anemometer was installed at the edge of the newly planted 
corn field approximately 10 m upwind of the pond at a height of 
2 m above the ground. The corn field was clear, with little crop 
growth during spring tests. However, at the start of the summer 
tests ( July, Aug., and Sept. 2011) the corn had grown to over 2 m. 
Obtaining wind flow data from the upwind anemometer directly 
facing the tall corn was not feasible; therefore, the anemometer 
was moved to the side berm or the downwind berm at a height 
of 2 m above the ground (Fig. 1). This provided a clear fetch of at 
least 40 m downwind of the corn. After the corn was harvested, 
additional experiments were conducted to evaluate the impact 
of surface roughness on the accuracy of the inverse-dispersion 
technique. These experiments used the wind data obtained from 
one of two anemometers simultaneously located on the upwind 
and either the side or the downwind berms of the pond (Sept. 
2011 to Feb. 2013). The anemometers were installed facing west.

The PIC data and the 3D wind speeds were averaged at 15-min 
intervals. For each 15-min period, the background concentrations 
were subtracted from the downwind concentrations. These 
net PIC data, along with the averaged wind data from the 
anemometers, were used as inputs to the Windows-based bLS 
inverse dispersion computer model, WindTrax 2.0 (Thunder 
Beach Scientific2008). For each measurement period, the bLS 
model calculated the upwind trajectory of 50,000 gas “particles” 
passing through the TDL path and determined the relationship 
between downwind concentration and the lagoon emission rate. 
The following data-filtering criteria were used to avoid error-
prone observation periods (Ro et al., 2013): (i) footprint coverage 
(FP) ≥ 20% of the lagoon (based on touchdown coverage in 
WindTrax); (ii) Obukhov stability length scale, |L|, ≥5 m (i.e., 
to avoid highly stable/unstable atmospheric stratification); and 
(iii) friction velocity, u*, ≥0.10 m s-1 (changed from ≥0.22 m s-1 
used in Ro et al. [2013])

The accuracy of the inverse-dispersion technique was 
calculated as

accuracy = QbLS/Q	 [1]

where Q is the actual emission rate (g s-1), and QbLS is the 
calculated emission rate from the bLS inverse-dispersion 
technique (g s-1). The central tendency and precision of the 
accuracy were represented with arithmetic averages and standard 
deviations (given as ± values in the subsequent accuracy 
summaries). An unpaired t test with Weltch’s correction was 
used for comparing two values. Simple statistical tests (e.g., 
mean, SD, and t tests) were performed using GraphPad Prism 
5.04 (GraphPad Software, Inc.). To assess the effects of the 
sensor locations on accuracy, the data obtained under different 
atmospheric stability conditions were statistically analyzed in 
SAS (SAS Institute Inc.) using Proc GLIMMIX.

Results and Discussion
For convenience, the PICs measured from the TDL at the 

middle of the pond at 1 m above the water surface are referred 
to as “middle PIC,” the PICs from the TDL at the downwind 
edge of the pond at 1 m above water surface are referred to as 
“lower PIC,” the PICs obtained from the TDL at the downwind 
berm are referred to as “berm PIC,” the 3D sonic anemometer 
positioned on the upwind berm of the pond is referred to as 
“upwind 3D,” the 3D sonic anemometer positioned on the 
side berm of the pond is referred to as “side 3D,” the 3D sonic 
anemometer positioned on the downwind berm of the pond 
is referred to as “berm 3D,” and the 3D sonic anemometer 
1 m above water surface of the pond and 6 m from the berm is 
referred to as “pond 3D.”

Ro et al. (2013) used the friction velocity criterion of u* ≥ 
0.22 m s-1 to filter their berm PIC datasets. However, evaluation 
of this study’s comprehensive datasets, including additional pond 
3D, middle and lower PIC datasets suggested that we could 
lower the friction velocity criterion to u* ≥ 0.1 m s-1 without 
sacrificing accuracy (Table 1). Much of highly scattered data 
were eliminated by filtering the data with the FP ≥ 20% criterion. 
This FP criterion significantly reduced the standard deviation 
from 3.4 to 0.41 with only a 1% reduction in the number of 
datasets. The standard deviation was further decreased from 0.41 
to 0.33 when an additional criterion of |L| ≥ 5 m was applied. 
The additional criterion of u* ≥ 0.1 m s-1 did not improve the 
accuracy or the standard deviation while losing only one dataset. 
It appeared as if these two criteria (|L| and u*) were essentially 
equivalent in our case (reflecting the functional relationship 
between L and u*). Therefore, we selected the new data criteria 
(FP ≥ 20%, |L| ≥ 5 m, u* ≥ 0.1 m s-1) to avoid the error-prone 
datasets. These new data criteria resulted in an approximately 
15% reduction in the total number of datasets.

Table 2 shows the summary of relative accuracies of all 
experimental runs consisting of 961 datasets. The datasets were 
also subdivided into different atmospheric stability conditions 
(Tables 3–5). We followed Seinfeld (1986) and categorized the 
atmosphere as “very unstable (VU),” “unstable (U),” “neutral 
(N),” “stable (S),” or “very stable (VS)” based on the Monin-
Obukhov length values of −100 m < L < 0, −105 m ≤ L ≤ -100 
m, |L| > 105 m, 10 m ≤ L ≤ 105 m, and 0 < L < 10 m, respectively. 
Seventy percent of the 961 datasets were obtained under VU 
conditions, and 11, 17, and 2% of the datasets were obtained 
under U, S, and VS atmospheric conditions, respectively.

The overall average accuracy (QbLS/Q) was 0.76 ± 0.33. The 
means of QbLS/Q for PIC locations across all 3D sonic locations 
ranged from 0.41 to 1.18, 0.0 to 1.75, and 0.28 to 0.96 for VU, U, 
and S atmospheric conditions, respectively. There was significant 
variability in accuracy depending on the location of the TDL 

Table 1. Accuracy, standard deviation, and number of datasets with various data filtering criteria.

All FP† ≥ 20% FP ≥ 20%, |L|‡ ≥ 5 m FP ≥ 20%, |L| ≥ 5 m,  
u*§ ≥ 0.1 m s-1

FP ≥ 20%, |L| ≥ 5 m,  
u* ≥ 0.22 m s-1

Mean (SD) 0.94 (3.4) 0.79 (0.41) 0.76 (0.33) 0.76 (0.33) 0.75 (0.31)
Number of datasets 1129 1115 962 961 747

† Footprint coverage.

‡ Obukhov stability length.

§ Friction velocity.
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Table 2. Accuracies of the backward Lagrangian stochastic technique using sensors at various locations under all atmospheric stability conditions.

3D sonic anemometer 
location PIC† location Berm surface 

roughness Temp. Wind speed QbLS/Q‡ No. of datasets

°C m s-1

Upwind 3D middle smooth 23.4 ± 4.7 4.8 ± 2.4 0.69 ± 0.30 41
rough 15.5 ± 1.8 4.2 ± 1.6 0.43 ± 0.25 32

lower smooth 24.0 ± 4.3 5.1 ± 2.2 1.06 ± 0.48 38
rough 15.8 ± 1.9 3.8 ± 1.8 0.73 ± 0.23 37

berm§ smooth 23.7 ± 4.6 5.0 ± 2.3 1.04 ± 0.38 39
rough 17.5 ± 4.2 4.3 ± 1.4 0.90 ± 0.11 40

0.82 ± 0.38 227
side 3D middle smooth 19.9 ± 2.9 4.2 ± 1.1 0.37 ± 0.12 30

rough 32.5 ± 1.7 2.5 ± 0.8 0.68 ± 0.19 45
lower smooth 20.1 ± 2.6 4.7 ± 1.3 0.80 ± 0.33 39

rough 32.5 ± 1.8 2.6 ± 0.8 0.74 ± 0.19 42
berm* smooth 22.5 ± 5.7 4.1 ± 1.1 1.08 ± 0.33 38

rough 32.1 ± 2.1 2.8 ± 0.8 0.79 ± 0.23 51
0.76 ± 0.31 245

berm 3D middle smooth 20.3 ± 2.6 4.2 ± 1.2 0.49 ± 0.13 31
rough 15.7 ± 1.9 4.1 ± 1.6 0.45 ± 0.22 33

lower smooth 20.4 ± 2.3 4.6 ± 1.4 0.83 ± 0.35 40
rough 16.1 ± 2.0 3.6 ± 1.8 0.74 ± 0.42 40

berm§ smooth 22.3 ± 4.4 4.2 ± 1.1 0.99 ± 0.19 40
rough 17.6 ± 4.2 4.3 ± 1.4 0.92 ± 0.32 40

0.76 ± 0.36 224
Pond 3D middle smooth 23.3 ± 4.5 4.8 ± 2.4 0.64 ± 0.22 41

rough 32.6 ± 1.6 2.4 ± 0.9 0.67 ± 0.14 51
lower smooth 24.1 ± 3.9 5.2 ± 2.2 1.02 ± 0.51 37

rough 32.6 ± 1.8 2.4 ± 0.9 0.65 ± 0.18 49
berm smooth 24.3 ± 4.0 5.2 ± 2.1 0.77 ± 0.22 37

rough 32.6 ± 1.7 2.5 ± 0.9 0.60 ± 0.19 50
0.71 ± 0.29 265

Overall 0.76 ± 0.33 961

† Path-integrated concentration.

‡ Accuracy of the inverse-dispersion technique, where Q is the actual emission rate (g s-1), and QbLS is the calculated emission rate from the backward 
Lagrangian stochastic inverse-dispersion technique (g s-1).

§ Old datasets (n = 104) (Ro et al., 2013) were combined with the new data from this study.

Table 3. Mean accuracies statistical analysis of backward Lagrangian stochastic technique using sensors at various locations for the very unstable 
atmospheric stability conditions.

Berm surface 
roughness

3D sonic anemometer 
location

PIC† location 3D sonic mean 
Berm Lower Middle

Qbls/Q‡

Rough berm3D 1.00 ± 0.44a§ 0.67 ± 0.55b 0.41 ± 0.25b 0.70 ± 0.50ab¶
pond3D 0.60 ± 0.20b 0.65 ± 0.12ab 0.68 ± 0.14a 0.66 ± 0.18b
side3D 0.78 ± 0.22a 0.74 ± 0.18ab 0.68 ± 0.19b 0.74 ± 0.20a

upwind3D 0.91 ± 0.12a 0.71 ± 0.26b 0.47 ± 0.20c 0.71 ± 0.26ab
PIC location mean 0.78 ± 0.28a 0.69 ± 0.29b 0.61 ± 0.21c 0.70 ± 0.27

smooth berm3D 1.09 ± 0.19a 1.00 ± 0.19a 0.49 ± 0.15b 0.88 ± 0.32b
pond3D 0.84 ± 0.26b 1.18 ± 0.63a 0.70 ± 0.11b 0.89 ± 0.42b
side3D 1.14 ± 0.35a 0.98 ± 0.16b 0.41 ± 0.11c 0.87 ± 0.39b

upwind3D 1.11 ± 0.44a 1.18 ± 0.56a 0.80 ± 0.29b 1.02 ± 0.46a
PIC Location Mean 1.07 ± 0.34a 1.08 ± 0.42a 0.61 ± 0.25b 0.92 ± 0.41

† Path integrated concentration.

‡ Accuracy of the inverse-dispersion technique, where Q is the actual emission rate (g s-1), and QbLS is the calculated emission rate from the backward 
Lagrangian stochastic inverse-dispersion technique (g s-1).

§ Row means followed by the same letter are not significantly different at the p = 0.05 level.

¶ Column means for the 3D sonic anemometer location followed by the same letter are not significantly different at the p = 0.05 level.
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used in the bLS calculation. The berm PIC and lower PIC for 
all 3D sonic anemometer positions produced significantly better 
accuracy than the middle PIC for all atmospheric and berm 
roughness conditions. The location of the 3D sonic anemometer 
was generally not a factor for the measured accuracies with the 
PIC positioned on the downwind berm under all berm surface 
and atmospheric stability conditions. The berm 3D as a control 
did not produce a significantly different accuracy compared 
with upwind 3D, side 3D, or pond 3D (Dunnett’s multiple 
comparison test, P > 0.05). For smooth berm surface under VU 
and U atmospheric stability, equivalently excellent accuracy 
was produced by berm PIC and lower PIC for all 3D sonic 
anemometer positions.

It was interesting to observe the consistently poor accuracies 
associated with the middle PIC for all sonic locations, berm 
surface, and atmospheric stability conditions. We conjectured 

that the middle PIC was above the gas plume constricted by the 
shallow lagoon boundary layer. Because all our sonic locations 
were also above this layer, the transport of gas from the lagoon 
surface to the PIC was not well described by the flow measured 
at any of the sonic locations. To gain further insight on the gas 
plume location, we compared the middle PICs and lower PICs 
(Fig. 3). During the periods when the middle PIC pond 3D 
produced relatively good results with less than ±30% errors 
(i.e., 0.7 ≤ QbLS/Q ≤ 1.3), the average CH4 concentration of the 
middle PICs were significantly higher than that of the lower 
PICs (P = 0.002). However, during the periods of poor results 
(i.e., QbLS/Q < 0.7 or > 1.3), the average CH4 concentration of 
the middle PICs was not significantly different from that of the 
lower PICs (P = 0.125). Therefore, we reasoned that the middle 
PIC might have missed the gas plume during the low-accuracy 

Table 4. Mean accuracies statistical analysis of backward Lagrangian stochastic technique using sensors at various locations for the unstable 
atmospheric conditions.

Berm surface 
roughness

3D sonic anemometer 
location

PIC† location 3D sonic mean 
Berm Lower Middle

Qbls/Q‡

Rough berm3D 0.85 ± 0.08a§ 0.85 ± 0.07a 0.55 ± 0.16b 0.75 ± 0.18a¶
pond3D 0.63 ± 0.10a 0.64 ± 0.12a 0.51 ± 0.13a 0.59 ± 0.12b
side3D 1.10 1.10.§
upwind 0.91 ± 0.17a 0.83 ± 0.11a 0.00 ± 0.00b 0.63 ± 0.44b

PIC location mean 0.84 ± 0.15a 0.80 ± 0.12a 0.46 ± 0.24 b 0.71 ± 0.24
Smooth berm3D 0.90 ± 0.11b 1.06 ± 0.08a 0.48 ± 0.09c 0.81 ± 0.27b

pond3D 0.60 1.08 1.75. 1.14 ± 0.58#
side3D 1.00 ± 0.07a 1.02 ± 0.10a 0.30 ± 0.02b 0.77 ± 0.37bc
upwind 0.91 ± 0.12a 0.87 ± 0.19a 0.42 ± 0.10b 0.73 ± 0.26c

PIC location mean 0.90 ± 0.13a 0.96 ± 0.17a 0.49 ± 0.17b 0.78 ± 0.27

† Path integrated concentration.

‡ Accuracy of the inverse-dispersion technique, where Q is the actual emission rate (g s-1), and QbLS is the calculated emission rate from the backward 
Lagrangian stochastic inverse-dispersion technique (g s-1).

§ Row means followed by the same letter are not significantly different at the p = 0.05 level.

¶ Column means for the 3D Sonic Anemometer Location followed by the same letter are not significantly different at the p = 0.05 level.

# Only one observation was measured for the unstable atmospheric condition, and it was not included in the statistical analysis.

Table 5. Mean accuracies statistical analysis of backward Lagrangian stochastic technique using sensors at various locations for the stable 
atmospheric conditions.

Berm surface 
roughness

3D sonic anemometer 
location

PIC† location 3D sonic mean 
Berm Lower Middle

QbLS/Q‡

Rough berm3D 0.83 ± 0.12a§ 0.85 ± 0.07a 0.40 ± 0.22b 0.71 ± 0.25a¶
pond3D
side3D
upwind 0.87 ± 0.07a 0.81 ± 0.07a 0.43 ± 0.35b 0.70 ± 0.28a

PIC location mean 0.84 ± 0.10a 0.83 ± 0.07a 0.41 ± 0.27b 0.71  ± 0.26
Smooth berm3D 0.88 ± 0.08a 0.50 ± 0.37b 0.49 ± 0.16b 0.62 ± 0.32bc

pond3D 0.79 ± 0.12a 0.96 ± 0.44a 0.56 ± 0.10b 0.76 ± 0.31a
side3D 0.86 ± 0.18a 0.48 ± 0.33b 0.28 ± 0.11b 0.53 ± 0.33c
upwind 0.86 ± 0.16a 0.78 ± 0.09ab 0.62 ± 0.05b 0.75 ± 0.14ab

PIC location mean 0.83 ± 0.13a 0.69 ± 0.44b 0.49 ± 0.32c 0.68 ± 0.32

† Path integrated concentration.

‡ Accuracy of the inverse-dispersion technique, where Q is the actual emission rate (g s-1), and QbLS is the calculated emission rate from the backward 
Lagrangian stochastic inverse-dispersion technique (g s-1).

§ Row means followed by the same letter are not significantly different at the p = 0.05 level.

¶ Column means for the 3D sonic anemometer location followed by the same letter are not significantly different at the p = 0.05 level.
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periods. However, without the aid of a 3D flow model to evaluate 
this hypothesis, we can only speculate at this time.

Another interesting observation was that the combined 
accuracy for smooth and rough berm surfaces of the lower 
PIC pond 3D (0.79 ± 0.39) was not significantly different 
from that of the lower PIC berm 3D (0.81 ± 0.40) (Fig. 4). 
The lower PIC-pond 3D configuration should yield better 
emission measurements than the berm PIC-pond 3D due to 
close proximity of the sensors to the lagoon’s internal boundary 
layer. However, we speculated that the 3D sonic anemometer 
positioned 1 m above the water surface (i.e., pond 3D) could 
miss some of the turbulence because the sonic measurement path 
length might be large relative to the smaller size of the eddies 
close to the water surface. The turbulence could be studied with 
spectral analyses of the sonic signals, but such systematic study is 
intensive and beyond the scope of this paper. We assumed that 
the signal loss was relatively small. For a height of 1 m, the errors 
in heat and momentum fluxes caused by frequency attenuation 
will be <5%, assuming ideal flat terrain turbulent spectra (Horst, 
1997; Massman, 2000).

The berm PIC–berm 3D with both sensors away from the 
lagoon’s internal boundary layer yielded the best combined 
accuracy of 0.95 ± 0.26 (Fig. 4). This finding appeared to 
argue against the ideas of some researchers (Wilson et al., 
2001; Flesch et al., 2007; McGinn et al., 2008) of avoiding the 
complex wind flow around lagoon borders, which is influenced 
by the aerodynamics of the lagoon surface, the berms, and the 
surrounding landscape. In light of this, it is not clear why we 
found the opposite to be the case. Perhaps our study pond is too 
small to establish a stable lagoon boundary layer over the water 
surface, or the berm height may not be high enough to create 
significant wind complexity around the pond border. Future work 
on spectral analyses of sonic anemometer data collected on the 
water surface and on the berms of various lagoons with different 
sizes and surroundings is needed to elucidate the reasons for this 
finding. Nevertheless, this was a fortunate finding because it 

would require considerably more effort to install sensors directly 
over the water surface, especially for animal waste lagoons.

We also compared the accuracies of the berm PIC–berm 
3D with those obtained from a more ideal terrain setting 
(i.e., homogeneous flat grass field without the land-to-water 
transitions) (Ro et al., 2011). The terrain was covered with short 
Bermudagrass (<0.1 m tall) at the time of the study. A 27-m2 
grid of 1.3-cm perforated polyvinyl chloride pipe similar to 
current floating pipe network was used as a synthetic emission 
source with a known emission rate. The instruments to obtain 
wind statistics and PICs were the same as that used in this study. 
Figure 5 shows that the sensor locations were similar to the 
current pond study (i.e., wind and concentration sensors were 
positioned along the downwind side of the synthetic emission 
source; data taken on 26 Feb. 2009 using M2 or M3 of Ro et 
al. [2011]). There were no significant differences among bLS 
accuracies for the pond emission or for the distributed land 
emission (P = 0.20) (Table 6). It appeared that the land–water 
complexity, berm, and the surrounding trees did not play a 
significant role for pond emission when the berm 3D and berm 

Fig. 3. Comparison of middle path-integrated concentrations (PICs) 
and lower PICs.

Fig. 4. Comparison of accuracies associated with instruments 
positioned above water surface and on the downwind berm. PIC, 
path-integrated concentration; QbLS/Q, accuracy of the inverse-
dispersion technique, where Q is the actual emission rate (g s−1), and 
QbLS is the calculated emission rate from the backward Lagrangian 
stochastic inverse-dispersion technique (g s−1).

Fig. 5. Layout of synthetic land emission source, path-integrated 
concentration (PIC), and three-dimensional sonic anemometer. M2 
and M3 are as described by Ro et al. [2011]).



1118	 Journal of Environmental Quality 

PICs were used in the bLS calculation. This is a significant, and 
again fortunate, finding because installation of sensors on the 
berm is much simpler and requires less time and costs less than 
installation at other locations directly above the water surface.

Conclusions
This study compared the accuracies of the bLS technique in 

measuring lagoon emissions using wind and concentration sensors 
located at various positions around the lagoon. The bLS accuracy 
was sensitive to the location of the PIC concentration sensor. The 
most accurate measurements occurred when the PIC was located 
on the downwind berm regardless of atmospheric stratification, 
berm roughness, or the location of sonic anemometer. For this 
PIC location, the bLS accuracies ranged from 79 to 108% with 
the sonic anemometer located on any side of the berm. The 
least accurate configuration had the PIC positioned over the 
middle of the lagoon for all sonic anemometer locations. These 
are very favorable results considering the practical difficulties in 
setting up equipment in the locations other than on berm. The 
accuracy of the emission calculations in this scenario is similar to 
that found in more ideal cases involving a distributed emission 
source on a homogeneous, flat, grass-covered terrain. Based on 
this rigorous tracer study, we recommend that the bLS technique 
with the optimal sensor location (both sensors located on 
downwind berm) is convenient and accurate enough to measure 
lagoon emissions.
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Table 6. Comparison of backward Lagrangian stochastic accuracies for pond and land emission sources.

Site  
condition

3D sonic 
anemometer location

PIC†  
location 

Berm  
surface

Atmospheric  
stability QbLS/Q‡ No. of datasets

Pond downwind berm downwind berm smooth very unstable 0.99 ± 0.19 40
Pond downwind berm downwind berm rough very unstable 0.91 ± 0.31 40
Land downwind emission 

source
downwind emission 

source
grass <0.1 m very unstable 0.87 ± 0.14 12

† Path-integrated concentration.

‡ Accuracy of the inverse-dispersion technique, where Q is the actual emission rate (g s-1), and QbLS is the calculated emission rate from the backward 
Lagrangian stochastic inverse-dispersion technique (g s-1).


